Density and Conditional Distribution Based
نویسندگان
چکیده
The technique of using densities and conditional distributions to carry out consistent specification testing and model selection amongst multiple diffusion processes have received considerable attention from both financial theoreticians and empirical econometricians over the last two decades. One reason for this interest is that correct specification of diffusion models describing dynamics of financial assets is crucial for many areas in finance including equity and option pricing, term structure modeling, and risk management, for example. In this paper, we discuss advances to this literature introduced by Corradi and Swanson (2005), who compare the cumulative distribution (marginal or joint) implied by a hypothesized null model with corresponding empirical distributions of observed data. We also outline and expand upon further testing results from Bhardwaj, Corradi and Swanson (BCS: 2008) and Corradi and Swanson (2011). In particular, parametric specification tests in the spirit of the conditional Kolmogorov test of Andrews (1997) that rely on block bootstrap resampling methods in order to construct test critical values are first discussed. Thereafter, extensions due to BCS (2008) for cases where the functional form of the conditional density is unknown are introduced, and related continuous time simulation methods are introduced. Finally, we broaden our discussion from single process specification testing to multiple process model selection by discussing how to construct predictive densities and how to compare the accuracy of predictive densities derived from alternative (possibly misspecified) diffusion models. In particular, we generalize simulation Steps outlined in Cai and Swanson (2011) to multifactor models where the number of latent variables is larger than three. These final tests can be thought of as continuous time generalizations of the discrete time “reality check” test statistics of White (2000), which are widely used in empirical finance (see e.g. Sullivan, Timmermann and White (1999, 2001)). We finish the chapter with an empirical illustration of model selection amongst alternative short term interest rate models.
منابع مشابه
Bayesian Prediction Intervals under Bivariate Truncated Generalized Cauchy Distribution
Ateya and Madhagi (2011) introduced a multivariate form of truncated generalized Cauchy distribution (TGCD), which introduced by Ateya and Al-Hussaini (2007). The multivariate version of (TGCD) is denoted by (MVTGCD). Among the features of this form are that subvectors and conditional subvectors of random vectors, distributed according to this distribution, have the same form of distribution ...
متن کاملPrediction of Times to Failure of Censored Units in Hybrid Censored Samples from Exponential Distribution
In this paper, we discuss different predictors of times to failure of units censored in a hybrid censored sample from exponential distribution. Bayesian and non-Bayesian point predictors for the times to failure of units are obtained. Non-Bayesian prediction Intervals are obtained based on pivotal and highest conditional density methods. Bayesian prediction intervals are also proposed. One real...
متن کاملمحاسبه حداکثر ارتفاع موج محتمل طی عمر طراحی سکوهای دریایی واقع در خلیجفارس
Abstract Prediction of maximum wave height and the relative period as the fundamental parameters for assessment and design of offshore structures are forced with uncertainties. This paper proposes two algorithms for calculation of the probable extreme wave height in the Persian Gulf with respect to existing statics data in the South Pars region. A long-term joint distribution model of the co...
متن کاملFinancial Risk Modeling with Markova Chain
Investors use different approaches to select optimal portfolio. so, Optimal investment choices according to return can be interpreted in different models. The traditional approach to allocate portfolio selection called a mean - variance explains. Another approach is Markov chain. Markov chain is a random process without memory. This means that the conditional probability distribution of the nex...
متن کاملInvariant Empirical Bayes Confidence Interval for Mean Vector of Normal Distribution and its Generalization for Exponential Family
Based on a given Bayesian model of multivariate normal with known variance matrix we will find an empirical Bayes confidence interval for the mean vector components which have normal distribution. We will find this empirical Bayes confidence interval as a conditional form on ancillary statistic. In both cases (i.e. conditional and unconditional empirical Bayes confidence interval), the empiri...
متن کاملOn Burr III-Inverse Weibull Distribution with COVID-19 Applications
We introduce a flexible lifetime distribution called Burr III-Inverse Weibull (BIII-IW). The new proposed distribution has well-known sub-models. The BIII-IW density function includes exponential, left-skewed, right-skewed and symmetrical shapes. The BIII-IW model’s failure rate can be monotone and non-monotone depending on the parameter values. To show the importance of the BIII-IW distributio...
متن کامل